A hybrid feature selection method for credit scoring

نویسندگان

  • Van-Sang Ha
  • Nam Nguyen Ha
  • Hien Nguyen Thi Bao
چکیده

Reliable credit scoring models played a very important role of retail banks to evaluate credit applications and it has been widely studied. The main objective of this paper is to build a hybrid credit scoring model using feature selection approach. In this study, we constructed a credit scoring model based on parallel GBM (Gradient Boosted Model), filter and wrapper approaches to evaluate the applicant’s credit score from the input features. Feature scoring expression are combined by feature important (Gini index) and Information Value. Backward sequential scheme is used for selecting optimal subset of relevant features while the subset is evaluated by GBM classifier. To reduce the running time, we applied parallel GBM classifier to evaluate the proposed subset of features. The experimental results showed that the proposed method obtained a higher predictive accuracy than a baseline method for some certain datasets. It also showed faster speed and better generalization than traditional feature selection methods widely used in credit scoring.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Use of Genetic Algorithm, Clustering and Feature Selection Techniques in Construction of Decision Tree Models for Credit Scoring

Decision tree modelling, as one of data mining techniques, is used for credit scoring of bank customers. The main problem is the construction of decision trees that could classify customers optimally. This study presents a new hybrid mining approach in the design of an effective and appropriate credit scoring model. It is based on genetic algorithm for credit scoring of bank customers in order ...

متن کامل

Credit scoring in banks and financial institutions via data mining techniques: A literature review

This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...

متن کامل

Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection

Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...

متن کامل

Enhancing credit scoring model performance by a hybrid scoring matrix

Competition of the consumer credit market in Taiwan has become severe recently. Therefore, most financial institutions actively develop credit scoring models based on assessments of the credit approval of new customers and the credit risk management of existing customers. This study uses a genetic algorithm for feature selection and decision trees for customer segmentation. Moreover, it utilize...

متن کامل

An Integrated Genetic-based Model of Naive Bayes Networks for Credit Scoring

Inappropriate management in some fields such as credit allocation has imposed too many losses to financial institutions and even has forced some of them to go bankrupt. Moreover, large volume data sets collected by credit departments has necessitated utilizing highly accurate models with less complexities. Credit scoring models with classification and forecasting customers into two groups good ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EAI Endorsed Trans. Context-aware Syst. & Appl.

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017